核糖核酸是什么?关于核糖核酸的科普介绍

创闻用户
创闻用户 2022-07-27 14:11:14

核糖核酸(RNA)是一类由核糖核苷酸通过3',5'-磷酸二酯键聚合而成的线性大分子。在各种生物活动中,RNA起着至关重要的作用,例如基因的编码,解码,调控和表达。RNA和DNA属于核酸,加上脂质、蛋白质和碳水化合物,这就是各种生命形式所需的四大主要高分子。类似于DNA一样,RNA也是由核苷酸构成,但与DNA不同,RNA在自然界中的存在方式是以单链折叠的形式存在,而不是成对的双链。在细胞生物中,信使RNA(mRNA)为遗传讯息的传递者,它能够指导蛋白质的合成(利用用鸟嘌呤、尿嘧啶、腺嘌呤和胞嘧啶进行编码和表达,四种碱基分别记作G、U、A和C)。许多病毒使用RNA 来编码它们的遗传信息。

一些RNA分子在催化生物反应、控制基因表达等方面发挥着重要作用。其中一个重要的过程是蛋白质的合成,其中RNA分子在核糖体参与合成蛋白质。这个过转移RNA (tRNA)向核糖体输送氨基酸的分子,之后核糖体RNA (rRNA)将氨基酸连接在一起,形成蛋白质。

与脱氧核糖核酸的比较

 

 

 

RNA的化学结构与DNA 非常相似,但有三个主要方面的不同:

  • 与双链DNA不同,RNA是单链分子并由短得多的核苷酸链组成。然而,单个RNA分子可以通过互补碱基配对形成序列内双链结构(这样的双链接构亦被称为“茎”),就像tRNA一样。
  • DNA中的戊糖为脱氧核糖,而RNA中的戊糖为核糖。其区别在于,脱氧核糖的2位碳上连接的是氢原子,而核糖的2位碳上连接的是羟基)。2位碳上的羟基降低了RNA的稳定性,使得RNA更易被水解。
  • 在DNA中,与腺嘌呤(A)互补的含氮碱基是胸腺嘧啶(T),而在RNA中,与腺嘌呤(A)互补的含氮碱基是尿嘧啶(U),它比胸腺嘧啶少了一个甲基。

像DNA一样,大多数有生物活性RNA,包括mRNA 、tRNA 、rRNA 、snRNA 和其他非编码RNA ,都含有自我互补序列,这让RNA能够折叠并与自身成对形成双链结构。对RNA的分析表明,它们是高度结构化的,并有着相对更复杂的结构。和DNA不同,RNA的二级结构并不是单纯的双螺旋,而由一系列短的二级结构构成。通过这些短的二级结构的组合,RNA甚至可以拥有与蛋白质相似的结构,并像酶那样催化化学反应(这样的RNA被称为核酶)。比如,对核糖体进行分析表明,其催化成肽反应的活性位点完全由RNA构成。

DNA与RNA的比较
项目 DNA RNA 解说
组成主干之糖类分子 2-脱氧核糖和磷酸 核糖和磷酸  
骨架结构 规则的双螺旋结构 单螺旋结构 即脱氧核糖核酸由两条脱氧核苷酸链构成,而核糖核酸由一条核糖核苷酸链构成。[11]:49
核苷酸数 通常上百万 通常数百至数千个  
碱基种类

腺嘌呤(A)···胸腺嘧啶(T)

胞嘧啶(C)···鸟嘌呤(G)

腺嘌呤(A)···尿嘧啶(U)

胞嘧啶(C)···鸟嘌呤(G)

除部分例外,DNA为胸腺嘧啶,RNA为尿嘧啶,使RNA更易被水解。
五碳糖种类 脱氧核糖 核糖  
五碳糖连接组成分 氢原子 羟基 在五碳糖的第二个碳原子上连接的组成分不同。
存在 细胞核(少量存在于线粒体、叶绿体) 细胞质  

结构

 

RNA的单体为核糖核苷酸,其中的戊糖为核糖,依系统命名法可将其中的碳原子从1'编号至5'。含氮碱基与1'碳原子相连。RNA中最基本的四种碱基分别为A(腺嘌呤)、U(尿嘧啶)、G(鸟嘌呤)、C(胞嘧啶)。其中,腺嘌呤和鸟嘌呤为双环的嘌呤,尿嘧啶和胞嘧啶为单环的嘧啶。磷酸基团与一个核糖残基的3'碳原子相连,与下一个核糖核苷酸的5'碳原子相连。磷酸基团在生理pH下,并不都能带上负电荷,因而RNA在生理条件下是带电荷分子(聚阴离子)。C和G、U和A、G和U之间能够形成氢键。不过,碱基之间也可能发生其他一些相互作用。比如,在一个凸出部分中,一群腺嘌呤可以互相连接,GNRA四环Tetraloop中就有一个G-A碱基对。

 

核糖的2位碳上连有羟基为RNA的一个重要结构特点。这类羟基使得RNA双链的结构应与A型构象最接近,不过,在单链的某些二核苷酸环境下,也有极小的可能形成DNA最常见的B型螺旋构象。A型构象使得RNA双链的大沟狭窄而深,小沟浅而宽。在RNA分子的构象高度可变区域(即不生成双链接构的区域),2'-OH还能攻击附近的磷酸二酯键,使得核糖-磷酸链断裂。

 

 

 

通过转录,仅仅能使RNA链上带A、U、G、C四种含氮碱基。过,转录后修饰能够通过多种途径对RNA进行改造。比如,转录后修饰能够将稀有碱基假尿嘧啶(Ψ)加到RNA链上。假尿嘧啶与核糖之间的化学键是C-C键而不是尿嘧啶(U)的C-N键。胸腺嘧啶加到RNA链上的情形也很常见(最典型的例子是tRNA的TΨC环)。另外,次黄嘌呤也是一种常见的稀有碱基。次黄嘌呤为腺嘌呤的脱氨产物,含有次黄嘌呤的核苷被称为肌苷(I)。在基因编码的摆动假说中,肌苷有重要的作用。

除以上列出的之外,经过编辑的核苷还有100多种。由修饰引发的结构性变化在tRNA中最为明显,假尿嘧啶与经常在rRNA中出现2'-甲氧基核糖是最常见的修饰产物。这些修饰的具体作用还没有完全阐明。不过,值得注意的是,在rRNA中,许多的转录后修饰发生在高度功能化的区域,比如肽基转移酶催化中心以及亚基结合部位,似乎说明转录后修饰对RNA发挥正常功能来说相当重要。

具有催化功能的单链RNA分子,和蛋白质相类似,需要特殊的RNA三级结构。通过分子内氢键形成的二级结构原件构成了三级结构的框架。二级结构形成了许多可识别的“结构域”——比如茎环结构、膨大结构(bulges)、内环结构。因为RNA分子带电荷,不少二级结构和三级结构需要二钾镁离子等金属离子来进行稳定。

自然界中的RNA均是由D-核糖核苷酸聚合而成的D-RNA。使用L-核糖核苷酸则可合成L-RNA。L-RNA对RNA酶的耐受力要强得多。

合成与修饰

RNA的合成一般由RNA聚合酶催化。RNA聚合酶以DNA为模板,通过转录合成RNA。转录起始于RNA聚合酶与启动子的结合(启动子一般位于基因的上游)。因为RNA聚合酶自带解旋酶活性,仅依靠RNA聚合酶即可实现DNA双链的解开。转录过程中,RNA聚合酶以3'端至5'端的方向读取DNA模板链,并以5'端到3'端的方向合成与之反向平行互补的RNA链。转录的终止由终止子介导。原核生物的终止子有两类:简单终止子与ρ因子依赖性终止子。简单终止子仅靠RNA形成二级结构即可终止转录,而后者在ρ因子的作用下才可以使转录终止。真核生物的转录终止则与转录后修饰密切相关。 

在真核生物中,RNA的初始转录物通常会经过转录后修饰。比如,真核生物的mRNA大都会被加上Poly(A)尾(多腺嘌呤尾巴)以及5'端帽,mRNA前体中含有的内含子序列也会被剪接体切除。

一些RNA是由RNA复制酶(RNA依赖性RNA聚合酶)以RNA为模板催化合成的。比方说,RNA病毒通过RNA复制酶复制其遗传物质。另外,RNA复制酶亦参与了众多生物体的RNA干涉过程。

分类

概观

在细胞中,根据结构功能的不同,RNA主要分三类,即tRNA、rRNA,以及mRNA。mRNA是依据DNA序列转录而成的蛋白质合成模板;tRNA是mRNA上遗传密码的识别者和氨酸的转运者;rRNA是组成核糖体的部分,而核糖体是蛋白质合成的场所。

细胞中还有许多种类和功能不一的小型RNA,像是组成剪接体(spliceosome)的snRNA,负责rRNA成型的snoRNA,以及参与RNAi作用的miRNA与siRNA等,可调节基因表达。而其他如I、II型内含子、RNase P、HDV、核糖体RNA等等都有催化生化反应过程的活性,即具有酶的活性,这类RNA被称为核酶。

调控RNA

许多种类的RNA,能够透过与mRNA或DNA上的基因片段,部分互补的方式,来调降基因表达。例如在真核生物细胞内,所发现的微RNA(miRNA; 21-22 nt),能引发RNA干扰。miRNA与酵素复合体,会切碎mRNA,阻止该mRNA被翻译,或加速其降解。

虽然小干扰RNA(siRNA; 20-25 nt)的产生,通常是由分解病毒RNA得到,然而也存在内源性的siRNA。而siRNA引发RNA干扰的机制类似miRNA,有些miRNA和siRNA,能造成其目标基因被甲基化,从而促进或抑制该基因的转录。此外,在动物生殖细胞内,所活跃的Piwi-interacting RNA(piRNA; 29-30 nt),被认为能预防转座子,并在配子的发生上,扮演重要角色。

许多的原核生物,具有CRISPR RNA,其作用机制类似于真核生物的RNA干扰。其中反义RNA(Antisense RNAs)是最常见的,大多数能调降基因表达,但也有少部分会激活转录进行。反义RNA的作用机制之一,是借由与mRNA互补配对,来形成双股RNA,而被酵素降解。此外,在真核细胞内,也许多能调控基因的非编码RNA,一个常见的例子是Xist,它会附在雌性哺乳动物的其中一个X染色体上,造成其去激活。

一段mRNA自身可能带有调控元件,例如riboswitches,在其五端非翻译区(5' untranslated region)或三端非翻译区(3' untranslated region),包含有顺式作用元件(cis-regulatory elements)能够调控该mRNA的活性。此外,非编码区上也有可能带有能调控其它基因的调控元件。

修饰其它RNA

许多的RNA会帮助修饰其它RNA。如前信使RNA(pre-mRNA)中的内含子,会被含有许多核小RNA(snRNA)的剪接体剪接。或者RNA本身能作为核酶,剪接自己的内含子。

RNA上的核苷酸也可能被修饰,变成非A、U、G、C的核苷酸。在真核细胞中,RNA上核苷酸的修饰,通常是由在细胞核与卡哈尔体中发现的,小核仁RNA(snoRNA; 60-300 nt)所主导。snoRNA会连结酵素,并以碱基对的方式,引导它们去接上RNA,之后酵素便开始RNA核苷酸的修饰。碱基修饰广泛发生于rRNA与tRNA中,然而snRNA与mRNA也有可能是碱基修饰的目标。此外,RNA也可能被甲基化。

RNA基因组

如同DNA,RNA也可以携带遗传信息。RNA病毒的基因组由RNA组成,可以翻译出多种蛋白质,其中一些负责基因组的复制,而其它的则作为保护构造,在病毒离开宿主细胞后,保护基因组。类病毒是另一种类型的病原体,但它们仅由RNA组成,且该RNA并不会翻译出任何蛋白质,并利用宿主的聚合酶来复制。

逆转录

逆转录病毒借由将RNA逆转录成为DNA,DNA副本再转录为RNA的方式,来复制他们的基因组。逆转录转座子也利用此方法,来复制DNA与RNA,以完成转座。此外,真核细胞内的端粒酶,也包含一个作为模板的RNA,利用它来延长染色体端粒。

双链RNA

双链RNA(dsRNA)是指具有两个互补链的RNA,与细胞中的DNA结构相似,它也是某些病毒(双链RNA病毒)的遗传物质。双链RNA如病毒RNA或小干扰RNA(siRNA),可以触发真核生物的RNA干扰,以及脊椎动物的干扰素反应。

本文转载于:搜狗科学,baike.sogou.com/kexue/d15012612563534336.htm,本内容使用CC-BY-SA 3.0授权,用户转载请注明出处